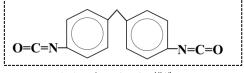


モデル界面を使った接着結合形態の推定

各種接着(接着剤/無機物質)の接着接合形態を推定します。


推定方法(炭素鋼とイソシアネートによる解析事例)

接着結合形態の推定例として、炭素鋼とイソシアネートの事例をご紹介いたします。

イソシアネートは、ウレタン系接着剤に使用される接着剤成分です。

(1)接着結合のモデル界面の作成

モデル界面として、アセトンにイソシアネートを極少量を溶解し、溶液中に炭素鋼を浸漬し、炭素鋼表面にイソシアネートを吸着させます。(詳細な方法は、対象接着剤や表面処理剤によって変わります。)

イソシアネート(MDI)の構造 MDI(methylenediisocyanate

(2) 表面分析と結合形態の推定

(1)で作製したモデル界面を表面分析(ToF-SIMS)により分析し、得られる分子の断片から炭素鋼とイソシアネートの結合形態を推定します。

推定結果(ToF-SIMSによる接着結合形態の推定)

観察されたフラグメントには、炭素鋼に吸着したMDI分子の断片(表1)があり、これらは、一部イソシアネート基がアミンに変わっています(例えばm/z=106.08, 197.11がこれに相当)。これは炭素鋼表面の吸着水もしくは大気中の水分とイソシアネートの反応の結果と推定されます。また界面から観察されたフラグメント(Feを含む)には、炭素鋼表面に由来する、イソシアネートと炭素鋼の結合した形態を含むものがあります。m/z=71.96, 147.99は、上記アミンと炭素鋼上の水酸基が反応し、化学結合を生成した事が、m/z=99.93, 130.94は、イソシアネート基が炭素鋼表面とウレタン結合を生成した事が、それぞれ推定できます。

表1 MDI分子の断片

m/z (a.u.)	Fragment	Structure
106.08	C ₇ H ₈ N ⁺	$H_2C=$ N^+H
132.05	C ₈ H ₆ NO ⁺	H ₂ C=
197.11	$C_{13}H_{13}N_2^+$	$H_2N -HC=$ $-N^+H$
223.10	$C_{14}H_{11}N_2O^+$	H_2N - C = C - N += C = O

 $-N=C=O + FeOH \longrightarrow -N-C=O$ $-N=C=O + H_2O \longrightarrow -N-C=O \longrightarrow -N-C=$

イソシアネートと炭素鋼表面の水酸基 によるウレタン結合の生成

アミン(イソシアネートと水分反応生成物) と炭素鋼表面の水酸基との脱水縮合

推定される炭素鋼とイソシアネート(MDI)との相互作用

表2 炭素鋼と界面領域由来の断片

m/z (a.u.)	Fragment	origin	Structure
71.96	FeNH ₂ ⁺	Steel/MDI interface	Н -№-Fе Н
147.99	C ₆ H ₆ NFe ⁺	Steel/MDI interface	$ \begin{pmatrix} $
99.93	FeO ₂ C	Steel/MDI interface	C=O O Fe
130.94	CHNO ₃ Fe ⁻	Steel/MDI interface	H-N ⁻ -C=O O Fe=O

※ 各種接着剤成分や表面処理剤の界面結合形態などを推定できます。詳細は当社へご相談下さい。

JFE テクノリサーチ 株式会社

Copyright ©2020 JFE Techno-Research Corporation. All Rights Reserved. 本資料の無断複製・転載・webサイトへのアップロード等はおやめ下さい。

https://www.jfe-tec.co.jp